
123

Chapter 3

3. Models of Parallel Computation

Silicon Graphics, Inc., makes multiprocessor computer systems. You can use any of
several programming models to exploit the parallel capabilities of the hardware. This
chapter reviews the parallel programming models, supplying enough information that
you can select one model. Pointers to more detailed documentation of each model are
included. The major topics are:

• “Parallel Hardware and Programming Models” on page 123 provides a quick
survey of the programming models and their relationship to the hardware.

• “Using Statement-Level Parallelism” on page 131 discusses using fine-grained
parallel execution in Fortran and C.

• “Using POSIX Threads” on page 141 gives an overview of the pthreads
implementation for IRIX 6.2.

• “Using Process-Level Parallelism” on page 136 provides an overview of the use of
coordinated UNIX processes for parallel execution.

• “Using MPI and PVM” on page 167 compares two interfaces for distributed,
process-level, parallelism.

Parallel Hardware and Programming Models

Silicon Graphics makes a variety of multiprocessor systems, including

• The CHALLENGE/Onyx systems (and their POWER versions) are symmetric
multiprocessor (SMP) computers. In these systems at least 2, and as many as 36,
identical microprocessors access a single, common memory and a common set of
peripherals through a high-speed bus.

• The POWER CHALLENGEarray™ comprises 2 or more POWER CHALLENGE™
systems connected by a high-speed local HIPPI network. Each node in the array is
an SMP with 2 to 36 CPUs. Nodes do not share a common memory; communication
between programs in different nodes passes through sockets. However, the entire
array can be administered and programmed as a single entity.

124

Chapter 3: Models of Parallel Computation

Most programs that run on a multiprocessor execute as if they were in a uniprocessor,
employing the facilities of a single CPU. The IRIX operating system applies CPUs to
different programs in order to maximize system throughput.

You can write a program so that it makes use of more than one CPU at a time. The
software interface that you use for this is the parallel programming model. Each model
is designed around a different set of assumptions about the hardware, and in particular
about the memory system available. Each model is implemented using a different library
of code linked with your program.

Parallel Programs on Uniprocessors

It might seem a contradiction, but it is possible to execute some parallel programs in
uniprocessors. Obviously you would not do this expecting the best performance.
However:

• It is possible to restrict and assign the available CPUs of a multiprocessor so that
only one CPU is available to execute a given program, even when the program is
meant for parallel execution. This can arise as a brief transient condition as IRIX
dynamically assigns CPUs to programs, or it can arise through the operator using
commands such as mpadmin (see the mpadmin(1) reference page).

• It is easier to debug a parallel program by running it in the more predictable
environment of a uniprocessor.

Most parallel programming libraries adapt to the available hardware. They run
concurrently on multiple CPUs when the CPUs are available (up to some
programmer-defined limit). They run on a limited number, or even just one CPU, when
necessary. For example, the Fortran programmer can control the number of CPUs used
by a MIPSpro Fortran 77 program by setting environment variables before the program
starts (see “Using Statement-Level Parallelism” on page 131).

Memory Systems

For parallel execution, the key memory issue is this: Can one process access data in
memory that belongs to another concurrent process, and if so, what is the time penalty
for doing so? The answer depends on the hardware architecture, and determines the
optimal programming model.

Parallel Hardware and Programming Models

125

Single Memory Systems

The CHALLENGE/Onyx system architecture uses a very high speed system bus to
connect all components of the system.

One component is the physical memory system, which plugs into the bus and is equally
available to all other components. Other units that plug into the system bus are I/O
adapters, such as the VME bus adapter. CPU modules containing MIPS R4000, R8000, or
R10000 CPUs are also plugged into the system bus.

In the CHALLENGE/Onyx architecture, the single, common memory has these features:

• There is a single address map; that is, the same word of memory has the same
address in every CPU.

• There is no time penalty for communication between processes because every
memory word is accessible in the same amount of time from any CPU.

• All peripherals are equally accessible from any process.

The effect of a single, common memory is that processes running in different CPUs can
share pages of memory, and can update the identical memory locations concurrently. For
example, suppose there are four CPUs available to a Fortran program that processes a
large array of data. You can divide a single DO-loop so that it executes concurrently on
the four CPUs, each CPU working in one-fourth of the array in memory.

As another example, IRIX allows processes to “map” a single segment of memory into
the virtual address spaces of two or more concurrent processes. Two processes can
transfer data at memory speeds, one putting the data into a mapped segment and the
other process taking the data out. They can coordinate their access to the data using
semaphores located in the shared segment.

Multiple Memory Systems

In an Array system such as a POWER CHALLENGEarray, each node is a computer built
on the CHALLENGE/Onyx architecture. However, the only connection between nodes
is the high-speed HIPPI bus between nodes. The system does not offer a single system
memory; instead, there is a separate memory subsystem in each node. As a result:

• There is not a single address map. A word of memory in one node cannot be
addressed at all from another node.

126

Chapter 3: Models of Parallel Computation

• There is a time penalty for some interprocess communication. When data passes
between programs in different nodes, it passes through a software socket and over
the HIPPI network, which takes longer than a memory-to-memory transfer.

• Peripherals are accessible only in the node to which they are physically attached.

Nevertheless it is possible to design an application that executes concurrently in multiple
nodes of an Array. The message-passing interface (MPI) is designed specifically for this.

Types of Parallel Models

The IRIX system supports a variety of parallel programming models. You can compare
these models on two features:

A summary comparison of the available models is shown in Table 3-1.

Granularity The relative size of the unit of computation that executes in
parallel: a single statement, a function, or an entire process.

Communication
channel

The basic mechanism by which the independent, concurrent units
of the program exchange data and synchronize their activity.

Table 3-1 Comparing Parallel Models

Model Granularity Communication

Power Fortran™, IRIS
POWER C™

Looping statement (DO or for
statement)

Shared variables in a single user
address space.

Ada95 tasks Ada Procedure Shared variables in a single user
address space.

POSIX threads C function Shared variables in a single user
address space.

Lightweight UNIX processes
(sproc())

C function Arena memory segment in a
single user address space.

General UNIX processes
(fork(), exec())

Process Arena segment mapped to
multiple address spaces.

Remote Procedure Call (RPC) Process Memory copy within node; UDP
or TCP network between nodes.

Parallel Hardware and Programming Models

127

Process-Level Parallelism

A default UNIX process consists of an address space, a varied set of state values, and one
thread of execution. The main task of the IRIX kernel is to create processes and to
dispatch them to different CPUs so as to maximize the utilization of the system.

IRIX contains a variety of interprocess communication (IPC) mechanisms, which are
discussed in Chapter 2, “Interprocess Communication.” These mechanisms can be used
to exchange data and to coordinate the activities of multiple, asynchronous processes
within a single-memory system. (Processes running in different nodes of an Array must
use one of the distributed models, see “Distributed Computation Models” on page 130.)

In traditional UNIX practice, one process creates another with the system call fork(),
which makes a duplicate of the calling process, after which the two copies execute
concurrently. Typically the new process immediately uses the exec() function to load a
new program.

The fork(2) reference page contains a complete list of the state values that are duplicated
when a process is created. The exec(2) reference page details the process of creating a new
program image for execution.

IRIX also supports the system function sproc(), which creates a lightweight process. A
process created with sproc() shares some of its state values with its parent process (the
sproc(2) reference page details how this sharing is specified).

In particular, a lightweight process does not have its own address space. It continues to
execute in the address space of the original process. In this respect, a lightweight process
is like a thread (see “Thread-Level Parallelism” on page 128). However, a lightweight
process differs from a true thread in two significant ways:

Portable Virtual Memory
(PVM)

Process Memory copy within node; TCP
socket between nodes.

Message-Passing (MPI) Process Memory copy within node;
special HIPPI interface between
nodes.

Table 3-1 (continued) Comparing Parallel Models

Model Granularity Communication

128

Chapter 3: Models of Parallel Computation

• A lightweight process still has a full set of UNIX state values, including its own
signal handlers. Some of these values, for example the table of open file descriptors,
can be shared with the parent process, but in general a lightweight process carries
most of the state information of a process.

• Dispatch of lightweight processes is done in the kernel, and a context switch
between lightweight processes, even when they share the same address space, is
time-consuming.

The library support for statement-level parallelism is based on the use of lightweight
processes, coordinating their activities through semaphores (see “Statement-Level
Parallelism” on page 129 and “Using IRIX Semaphores” on page 45).

Thread-Level Parallelism

A thread is an independent execution state in the context of a program. The concept of a
thread is well-known, and the word “thread” is casually used for any kind of
independent execution state. However, the best-known formal definition of threads and
their operation is found in IEEE standard 1003.1c-1995, “System Application Program
Interface—Amendment 2: Threads Extension.”

There are three key differences between a thread and a process:

• A UNIX process has its own set of UNIX state information, for example, its own
process ID, effective user ID, signal handlers, and set of open file descriptors.

Threads exist within a process and do not have distinct copies of these UNIX state
values. Threads share the single state belonging to their process.

• Normally, each UNIX process has a unique address space of memory segments that
are accessible only to that process (lightweight processes created with sproc() share
all or part of an address space).

Threads within a process always share the single address space belonging to their
process.

• Processes are scheduled by the IRIX kernel. A change of process requires two
context changes, one to enter the kernel domain and one to return to the user
domain of the next process. Since a process carries a large amount of state
information, the change from the context of one process to the context of another
can entail many instructions.

Parallel Hardware and Programming Models

129

In contrast, threads are scheduled by code that operates almost entirely in the user
domain, without kernel assistance. Since threads have less state information, thread
scheduling is faster than process scheduling.

The POSIX standard for multithreaded programs (IEEE standard 1003.1c) is supported
by IRIX 6.2 after the following patches are applied: 1361, 1367, and 1389. The use of
POSIX threads is discussed further under “Using POSIX Threads” on page 141.

In addition, the Silicon Graphics, Inc. implementation of the Ada 95 language includes
support for multitasking Ada programs. The current implementation of Ada uses an
early version of the pthreads library. The next release of Ada will use the POSIX library.
For a complete discussion of the Ada 95 task facility, refer to the Ada 95 Reference Manual,
which installs with the Ada 95 compiler (GNAT) product.

Statement-Level Parallelism

The finest level of granularity is to run individual statements in parallel. This provided
using any of three language products:

• MIPSpro Fortran 77 supports compiler directives that command parallel execution
of the bodies of DO-loops. The MIPSpro POWER Fortran 77 product is a
preprocessor that automates the insertion of these directives in a serial program.

• MIPSpro Fortran 90 supports parallelizing directives similar to MIPSpro Fortran 77,
and the MIPSpro POWER Fortran 90 product automates their placement.

• MIPSpro POWER C supports compiler pragmas that command parallel execution
of segments of code. The IRIS POWER C analyzer automates the insertion of these
pragmas in a serial program.

In all three languages, the run-time library—which provides the execution environment
for the compiled program—contains support for parallel execution. The compiler
generates library calls. The library functions create lightweight processes using sproc(),
and distribute loop iterations among them.

The run-time support can adapt itself dynamically to the number of available CPUs.
Alternatively, you can control it—either using program source statements, or using
environment variables at execution time—to use a certain number of CPUs.

Statement-level parallel support is based on using common variables in memory, and so
it can be used only within the bounds of a single-memory system, a CHALLENGE or a
single node in a POWER CHALLENGEarray.

130

Chapter 3: Models of Parallel Computation

Distributed Computation Models

You can “distribute” a computation by putting parts of the work on different computers.
Three models of distributed execution are supported by Silicon Graphics, Inc. systems.
Each is a formal, abstract model for distributing a computation across the nodes of a
multiple-memory system, without having to reflect the system configuration in the
source code. The three programming models are:

• Message-Passing Interface (MPI)

• Portable Virtual Memory (PVM)

• Remote Procedure Call (RPC) interface

Each of the three has its particular strengths and weaknesses.

Message-Passing Interface (MPI) Model

MPI is a standard programming interface for the construction of a portable, parallel
application in Fortran 77 or in C, especially when the application can be decomposed into
a fixed number of processes operating in a fixed topology (for example, a pipeline, grid,
or tree).

A highly tuned, efficient implementation of MPI is included with the Array 2.0 software
support for Array systems such as the POWER CHALLENGEarray. MPI is the
recommended parallel model for use with Array products.

MPI is discussed in more detail under “Using MPI and PVM” on page 167.

Portable Virtual Machine (PVM) Model

PVM is an integrated set of software tools and libraries that emulates a general-purpose,
flexible, heterogeneous, concurrent computing framework on interconnected computers
of varied architecture. Using PVM, you can create a parallel application that executes as
a set of concurrent processes on a set of computers that can include uniprocessors,
multiprocessors, and nodes of Array systems.

An implementation of PVM is included with the Array 2.0 software for Silicon Graphics,
Inc. Array systems. PVM has a better ability to deal with a heterogenous computer
network than MPI does. In every other way, MPI is preferable. When the application runs
in the context of a single Array system, an MPI design has better performance.

Using Statement-Level Parallelism

131

PVM is discussed in more detail under “Using MPI and PVM” on page 167.

Remote Procedure Call (RPC) Model

RPC is a standard programming interface originally developed at Sun Microsystems, Inc.
and used as the basis of Sun’s Network File System (NFS) standard. RPC is used
extensively within the IRIX system (and in most current UNIX implementations) to
provide NFS and network management services.

The purpose of the RPC interface is to distribute services across a network, so that one
program can easily supply a service to all others. An RPC server program registers the
services it can provide with RPC. A client program anywhere in the network can issue a
remote procedure call for a registered service, and the RPC interface takes care of locating
the server program, invoking its service, and returning the result values to the caller.

RPC by itself does not support concurrent execution. A remote procedure call, like a local
procedure call, is synchronous; that is, the caller is blocked until the called procedure
completes its work. RPC is a method of distributing a computation over a network, not
a method of parallel execution. However, RPC can be combined with other parallel
execution models. For example, a thread or lightweight process can issue remote
procedure calls.

RPC libraries are included in IRIX. For an overview of RPC programming, see the IRIX
Network Programming Guide. For further details, refer to the rpc(3R) reference page.

Using Statement-Level Parallelism

As noted under “Statement-Level Parallelism” on page 129, you can use statement-level
parallelism in three language packages: Fortran 77, Fortran 90, and C. This type of
parallelism is unique in that you begin with a normal, serial program, and you can
always return the program to serial execution by recompiling. Every other parallel model
requires you to plan and write a parallel program from the start.

132

Chapter 3: Models of Parallel Computation

The parallel features of all three of these languages are documented in detail in the
manuals listed in Table 3-2.

In addition to these products from Silicon Graphics, Inc., the High Performance Fortran
(HPF) compiler from the Portland Group is a compiler for Fortran 90 augmented to the
HPF standard. It supports automatic parallelization. (Refer to http://www.pgroup.com
for more information).

The FORGE products from Applied Parallel Research (APRI) contain a Fortran 77 source
analyzer that can insert parallelizing directives, although not the directives supported by
MIPSpro Fortran 77. (Refer to http://www.infomall.org/apri for more information.)

Creating Parallel Programs

In each of the three languages, the language compiler supports explicit statements that
command parallel execution (#pragma lines for C; directives and assertions for Fortran).
However, placing these statements is a demanding, error-prone task. It is easy to create
a suboptimal program, or worse, a program that is incorrect in subtle ways. Furthermore,
small changes in program logic can invalidate parallel directives in ways that are hard to
foresee, so it is difficult to maintain a program that has been manually made parallel.

Table 3-2 Documentation for Statement-Level Parallel Products

Manual Document

Number

Contents

IRIS POWER C User’s Guide 007-0702-0x0 Use of the IRIS POWER C Analyzer, including all
pragmas.

MIPSpro Fortran 77
Programmer’s Guide

007-2361-00x General use of Fortran 77, including parallelizing
assertions and directives.

MIPSpro Power Fortran 77
Programmer’s Guide

007-2363-00x Use of the Power Fortran source analyzer to place
directives automatically.

MIPSpro Fortran 90
Programmer’s Guide

007-2761-001 General use of Fortran 90, including parallelizing
assertions and directives.

MIPSpro Power Fortran 90
Programmer’s Guide

007-2760-001 Use of the Power Fortran 90 source analyzer to
place directives automatically.

Using Statement-Level Parallelism

133

For each language, there is a source-level program analyzer that is sold as a separate
product (IRIS POWER C, MIPSpro Power Fortran 77, MIPSpro Power Fortran 90). The
analyzer identifies sections of the program that can safely be executed in parallel, and
automatically inserts the parallelizing directives. After any logic change, you can run the
analysis again, so that maintenance is easier.

The source analyzer makes conservative assumptions about the way the program uses
data. As a result, it often is unable to find all the potential parallelism. However, the
analyzer produces a detailed listing of the program source, showing each segment that
could or could not be parallelized, and why. Directed by this listing, you insert source
assertions that give the analyzer more information about the program.

The method of creating an optimized parallel program is as follows:

1. Write a complete application that runs on a single processor.

2. Completely debug and verify the correctness of the program in serial execution.

3. Apply the source analyzer and study the listing it produces.

4. Add assertions to the source program. These are not explicit commands to
parallelize, but high-level statements that describe the program’s use of data.

5. Repeat steps 3 and 4 until the analyzer finds as much parallelism as possible.

6. Run the program on a single-memory multiprocessor.

When the program requires maintenance, you make the necessary logic changes and,
simultaneously, you remove any assertions about the changed code—unless you are
certain that the assertions are still true of the modified logic. Then repeat the preceding
procedure from step 2.

Managing Statement-Parallel Execution

The run-time library for each of the languages uses IRIX lightweight processes to
implement parallel execution (see “Process-Level Parallelism” on page 127).

When a parallel program starts, the run-time support creates a pool of lightweight
processes using the sproc() function. Initially the extra processes are blocked, and one
process executes the opening passage of the program. When execution reaches a parallel
section, the run-time support unblocks as many processes as necessary. Each one begins
to execute the same block of statements. The processes share global variables, while each
has its own copy of variables that are local to one iteration of a loop, such as a loop index.

134

Chapter 3: Models of Parallel Computation

When a process completes its portion of the work of that section, it returns to the
run-time library code, where it picks up another portion of work if any work remains, or
simply blocks until the next time it is needed. At the end of the parallel section, all extra
processes are blocked and the original process continues to execute the serial code
following the parallel section.

Controlling the Degree of Parallelism

You can specify the number of lightweight processes that are started by a program. In
IRIS POWER C, you can use #pragma numthreads to specify the exact number of processes
to start, but it is not a good idea to embed this number in a source program. In all
implementations, the run-time library by default starts enough processes that there is
one for each CPU in the system. That default is often too high, since at least one of the
CPUs is normally dedicated to other work.

The run-time library checks an environment variable, MPC_SET_NUM_THREADS, for
the number of processes to start. You can use this environment variable to choose the
number of processes used by a particular run of the program, thereby tuning the
program’s requirements to the system load. You can even force a parallelized program to
execute on a single CPU when necessary.

MIPSpro Fortran 77 and MIPSpro Fortran 90 also recognize additional environment
variables that specify a range of process numbers, and use more or fewer processes
within this range as system load varies. (See the Programmer’s Guide for the language for
details.)

At certain points the multiple processes must wait for one another before continuing.
They do this by waiting in a busy-loop for a certain length of time, then by blocking until
they are signaled. You can specify the amount of time that a process should spend
spinning before it blocks, using either source directives or an environment variable (see
the Programmer’s Guide for the language for system functions for this purpose).

Choosing the Loop Schedule Type

Most parallel sections are loops. The benefit of parallelization is that some iterations of
the loop are executed in one CPU, concurrent with other iterations of the same loop in
other CPUs. But how are the different iterations distributed across processes? The

Using Statement-Level Parallelism

135

languages support four possible methods of scheduling loop iterations, as summarized
in Table 3-3.

The variables used in Table 3-3 are as follows:

The effects of the scheduling types depend on the nature of the loops being parallelized.
For example:

• The SIMPLE method works well when N is relatively small. However, unless N is
evenly divided by P, there will be a time at the end of the loop when fewer than P
processes are working, and possibly only one.

• The DYNAMIC and INTERLEAVE methods allow you to set the chunk size so as to
control the span of an array referenced by each process. You can use this to reduce
cache effects. When N is very large so that not all data fits in memory, INTERLEAVE
may reduce the amount of paging compared to DYNAMIC.

• The guided self-scheduling (GSS) method is good for triangular matrices and other
algorithms where loop iterations become faster toward the end.

You can use source directives or pragmas within the program to specify the scheduling
type and chunk size for particular loops. Where you do not specify the scheduling, the

Table 3-3 Loop Scheduling Types

Schedule Purpose

SIMPLE Each process executes N/P iterations starting at Q*(N/P). First process to
finish takes the remainder chunk, if any.

DYNAMIC Each process executes C iterations of the loop, starting with the next undone
chunk unit, returning for another chunk until none are left undone.

INTERLEAVE Each process executes C iterations at C*Q, C*2Q, C*3Q...

GSS Each process executes chunks of decreasing size, (N/2P), (N/4P),...

N Number of iterations in the loop, determined from the source or at run-time.

P Number of available processes, set by default or by environment variable
(see “Controlling the Degree of Parallelism” on page 134).

Q Number of a process, from 0 to N-1.

C “Chunk” size, set by directive or by environment variable.

136

Chapter 3: Models of Parallel Computation

run-time library uses a default method and chunk size. You can establish this default
scheduling type and chunk size using environment variables.

Using Process-Level Parallelism

Software products from Silicon Graphics, Inc. use process-level parallelism in order to
exploit the power of single-memory multiprocessors. For example, the IRIS Performer
graphics library normally creates a separate lightweight process to manage the graphics
pipe in parallel with rendering work. The run-time library for statement-level
parallelism creates a pool of lightweight processes and dispatches them to execute parts
of loop code in parallel (see “Managing Statement-Parallel Execution” on page 133).

Parallelism in Real-Time Applications

In real-time programs such as aircraft or vehicle simulators, separate processes are used
to distribute the work of the simulation onto multiple CPUs. In these demanding
applications, the programmer frequently uses IRIX facilities to

• reserve one or more CPUs of a multiprocessor for exclusive use by the application

• isolate the reserved CPUs from all interrupts

• assign specific processes to execute on specific, reserved CPUs

These facilities are described in detail in the REACT Real-Time Programmer’s Guide
(007-2499-00x). Also covered in that book is the use of the Frame Scheduler, an alternate
process scheduler. The normal process scheduling algorithm of the IRIX kernel attempts
to keep all CPUs busy and to keep all processes advancing in a fair manner. This
algorithm is in conflict with the stringent needs of a real-time program, which needs to
dedicate predictable amounts of hardware capacity to its processes, without regard to
fairness.

The Frame Scheduler seizes one or more CPUs of a multiprocessor, isolates them, and
executes a specified set of processes on each CPU in strict rotation. The Frame Scheduler
has much lower overhead than the normal IRIX scheduler; and it has features designed
for real-time work, including detection of overrun (when a scheduled process does not
complete its work in the necessary time) and underrun (when a scheduled process fails
to execute in its turn).

Using Process-Level Parallelism

137

At this writing there are no real-time applications that use multiple nodes of an Array
system.

Process Synchronization and Share Groups

IRIX provides a variety of features to make it possible to build an application consisting
of multiple, lightweight processes. In general, a lightweight process is one that shares the
address space of its parent process (see “Process-Level Parallelism” on page 127). The
parent process and the sibling processes that it creates are a share group. IRIX provides
special services to share groups.

Process Communication and Coordination

IRIX supports a wide range of interprocess communication (IPC) facilities. These are
discussed in detail in Chapter 2, “Interprocess Communication.” They include:

• The use of shared arenas for common memory (see “Initializing a Shared Arena” on
page 36 and the following topics).

• IRIX semaphores (“Using IRIX Semaphores” on page 45), locks (“Using Locks” on
page 47) and barriers (“Using Barriers” on page 49) for coordination and mutual
exclusion.

The IRIX semaphores and locks are especially tuned to efficiency in a
multiprocessor environment.

• Portable support for interprocess messages, shared memory, and semaphores
(“System V IPC Overview” on page 51).

The REACT™/Pro product includes a number of examples of real-time programs that
use IRIX IPC features. The REACT Real-Time Programmer’s Guide includes the source code
of additional examples.

Process Creation

The sproc() and sprocsp() functions create a lightweight process (see the sproc(2)
reference page). The difference between the calls is that sproc() allocates a new memory
segment to serve as the stack for the new process. You use sprocsp() to specify a stack
segment that you have already allocated—for example, a block of memory that you
allocate and lock against paging using mpin().

138

Chapter 3: Models of Parallel Computation

In the traditional fork() call, the new process executes the identical program text as the
old one; that is, both processes “return” from fork() and you distinguish them by the
return code, which is 0 in the child process and the new process ID in the parent.

The sproc() call differs in that it takes as an argument the address of the function that the
new process should execute. Often, each child process has a particular role to play, and
the function represents that work.

Another design is possible. In some applications, you may have to manage a flow of
many, relatively short, activities which should be done in parallel. However, the sproc()
function has considerable overhead. It is inefficient to continually create and destroy
child processes. You do not want to create a new child process for each small activity and
destroy it afterward. Instead, you can create a pool containing a small number of
processes. When a piece of work needs to be done, you can dispatch one process to do it.
The fragmentary code in Example 3-1 shows the general approach.

Example 3-1 Partial Code to Manage a Pool of Processes

typedef void (*func)(void *arg) workFunc;
struct oneSproc {

struct oneSproc *next; /* -> next oneSproc ready to run */
workFunc calledFunc; /* -> function the sproc is to call */
void *callArg; /* argument to pass to the called func */
usema_t *sprocDone; /* optional sema to post on completion */
usema_t *sprocWait; /* sproc waits for work here */

} sprocList[NUMSPROCS];
usema_t *readySprocs; /* count represents sprocs ready to work */
uslock_t sprocListLock; /* mutex control of sprocList head */
struct oneSproc *sprocList; /* -> first ready oneSproc */
/*
|| Put a oneSproc structure on the ready list and sleep on it.
|| Called by a child process when its work is done.
*/
void sprocSleep(struct oneSproc *theSproc)
{

ussetlock(sprocListLock); /* acquire exclusive rights to sprocList */
theSproc->next = sprocList; /* put self on the list */
sprocList = theSproc;
usunsetlock(sprocListLock); /* release sprocList */
usvsema(readySprocs); /* notify master, at least 1 on the list */
uspsema(theSproc->sprocWait);/* sleep until master posts me */

}
/*
|| Body of a general-purpose child process. The argument, which must

Using Process-Level Parallelism

139

|| be declared void* to match the sproc() prototype, is the oneSproc
|| structure that represents this process. The contents of that
|| struct, in particular sprocWait, are initialized by the parent.
*/
void childBody(void *theSprocAsVoid)
{

struct oneSproc *mySproc = (struct oneSproc *)theSprocAsVoid;
/* here one could establish signal handlers, etc. */
for(;;)
{

sprocSleep(mySproc); /* wait for work to do */
mySproc->calledFunc(mySproc->callArg); /* do the work */
if (mySproc->sprocDone) /* if a completion sema is given, */

usvsema(mySproc->sprocDone); /* ..post it */
}

}
/*
|| Acquire a oneSproc structure from the ready list, waiting if necessary.
|| Called by the master process as part of dispatching a sproc.
*/
struct oneSproc *getSproc()
{

struct oneSproc *theSproc;
uspsema(readySprocs); /* wait until at least 1 sproc is free */
ussetlock(sprocListLock); /* acquire exclusive rights to sprocList */
theSproc = sprocList; /* get address of first free oneSproc */
sprocList = theSproc->next; /* make next in list, the head of list */
usunsetlock(sprocListLock); /* release sprocList */
return theSproc;

}
/*
|| Start a function going asynchronously. Called by master process.
*/
void execFunc(workFunc toCall, void *callWith, usema_t *done)
{

struct oneSproc *theSproc = getSproc();
theSproc->calledFunc = toCall; /* set address of func to exec */
theSproc->callArg = callWith; /* set argument to pass */
theSproc->sprocDone = done; /* set sema to post on completion */
usvsema(theSproc->sprocWait); /* wake up sleeping process */

}

140

Chapter 3: Models of Parallel Computation

Process Scheduling Features

The IRIX kernel supports special process scheduling rules for share groups. This permits
you to increase the efficiency of a parallel program in some cases. The feature is
controlled by the schedctl() kernel function (detailed in the schedctl(2) reference page).

When schedctl() is called with the SCHEDMODE argument, it sets one of three
scheduling rules for the share group whose member issues the call:

Under gang scheduling, IRIX tries to run all processes of a share group concurrently.
When this is possible (in other words, when there are enough available CPUs in the
multiprocessor), gang scheduling can greatly reduce lock conflicts between processes.

Without gang scheduling, one member of the share group can acquire a lock and then be
suspended. Another member, attempting to acquire the lock, is also suspended until the
first process is dispatched again and releases the lock.

With gang scheduling, when a second member attempts to acquire the lock, the first
process is almost certainly executing at the same time, and releases the lock while the
second member is still spinning.

Process Management Features

The prctl() kernel function provides a variety of process-related management tools
(detailed in the prctl(2) reference page). One feature useful for parallel programs is the
PR_MAXPPROCS query. This returns the number of different CPUs that the calling
process could use for execution. The returned number is 1 when the caller has been
assigned to a particular CPU. Otherwise it is the number of unrestricted CPUs in the
system. A parent process could use this during initialization to find out the degree of
parallelism it can hope to achieve.

The sysmp() kernel function provides information about a multiprocessor (detailed in
the sysmp(2) reference page). Some of the queries useful to a parallel program include

SGS_FREE The normal situation, in which each process is scheduled individually.

SGS_SINGLE All but the master process of the share group are blocked. This permits
the master process to perform initialization or error recovery without
contention from other members of the group.

SGS_GANG All processes of the group run concurrently, provided there are sufficient
CPUs available.

Using POSIX Threads

141

MP_NPROCS, return number of CPUs in the system, and MP_NAPROCS, return the
number of CPUs available for normal process scheduling.

Using POSIX Threads

As noted under “Thread-Level Parallelism” on page 128, a thread is an independent
execution state; that is, a set of machine registers, a call stack, and the ability to execute
code. When IRIX creates a process, it also creates one thread to execute that process.
However, you can write a program that creates many more threads to execute in the same
address space. Your program must use the functions defined by IEEE standard
1003.1c-1995. Threads of this kind are called pthreads, short for POSIX threads.

Comparing Pthreads and Lightweight Processes

You use pthreads in preference to lightweight processes for two main reasons: portability
and performance. A program based on pthreads is normally easier to port than a
program that depends on a unique facility such as sproc(). Table 3-4 summarizes some of
the differences between pthreads and lightweight processes.

Table 3-4 Comparison of Pthreads and Processes

Attribute POSIX Threads Lightweight Processes UNIX Processes

Source portability Standard interface,
portable between
vendors

sproc() is unique to
IRIX

fork() is a UNIX
standard

Creation overhead Relatively small Moderately large Quite large

Block/Unblock
(Dispatch) Overhead

Few microseconds Many microseconds Many microseconds

Address space Shared Shared, or copy on
write, or separate

Separate

Memory-mapped
files and arenas

Shared Shared, or copy on
write, or separate

Explicit sharing only

Mutual exclusion
objects

Pthread mutexes and
condition variables

IRIX semaphores and
locks

IRIX semaphores and
locks

142

Chapter 3: Models of Parallel Computation

It takes relatively little time to create or destroy a pthread, as compared to creating a
lightweight process. Pthreads are dispatched almost entirely within user-level code, in
the pthreads library. Because there are fewer context switches in and out of the kernel,
there is less overhead in dispatching a large number of threads than there is in
dispatching a similar number of lightweight processes.

On the other hand, threads share all resources and attributes of a single process (except
for the signal mask, see “Pthreads and Signals” on page 153). If you want each executing
entity to have its own set of file descriptors, or if you want to make sure that one entity
cannot modify data shared with another entity, you must use lightweight processes or
normal processes.

Compiling and Debugging a Pthread Application

A pthread application is a C program that uses some of the POSIX pthreads functions. In
order to use these functions, and in order to access the thread-safe versions of the
standard I/O macros, you must include the proper header files and link with the
pthreads library. You can debug and analyze the compiled program using some of the
tools available for IRIX.

Files, pipes, and I/O
streams

Shared
single-process file
table

Shared or separate file
table

Separate

Signal Masks and
signal handlers

Each thread has a
mask but handlers
are shared

Each process has a
mask and its own
handlers

Each process has a
mask and its own
handlers

Resource limits Single-process limits Single-process limits Limits apply to each
process separately

Process ID One PID applies to
all threads

PID per process plus
share-group PID

PID per process

Effective user and
group IDs

Inherited and
unchangeable

Inherited, can be
changed

Inherited, can be
changed

Table 3-4 (continued) Comparison of Pthreads and Processes

Attribute POSIX Threads Lightweight Processes UNIX Processes

Using POSIX Threads

143

Compiling Pthread Source

The header files related to pthreads functions are summarized in Table 3-5.

Prior to the inclusion of stdio.h, be sure that the compiler variables _POSIX1C and _NO_
ANSIMODE are defined. These variables are set by default in most compiles. Read the
header file /usr/include/standards.h (which is included by stdio.h) to see the logic of
standard namespace definition.

You can use pthreads with a program compiled to any of the supported execution
models: -32 for compatibility with older systems, -n32 for 64-bit data and 32-bit
addressing, or -64 for 64-bit addressing.

The pthreads functions are defined in the library libpthread.so. Link with this library using
the -lpthread compiler option, which should be the last library on the command line. The
compiler chooses the correct library based on the execution model: /usr/lib/libpthread.so,
/usr/lib32/libpthread.so, and /usr/lib64/libpthread.so. (However, you must be sure that the
needed version of the library is installed; the -n32 and -64 libraries do not install by
default.)

Tip: Many names in libpthread override names defined in libc. The linker displays many
warning messages about these overrides. You can silence the warnings with the
-Wl,-woff,85 compile option.

Table 3-5 Header Files Related to Pthreads

Header Primary Contents

errno.h System error codes returned by pthreads functions.

pthread.h Pthread functions and special pthread data types.

sched.h The sched_param structure and related functions used in setting thread priorities.

stdio.h Standard stream I/O macros, including thread-safe versions

sys/types.h SGI and standard data types.

limits.h Some POSIX constants such as _POSIX_THREAD_THREADS_MAX

unistd.h Constants used when calling sysconf() to query POSIX limits (see the sysconf(3)
reference page).

Debugging With dbx

The dbx debugger is distributed with the IRIX Developer’s Option. Version 7.0 of dbx is
required to work properly with pthreads.

When debugging a pthreads program, you must set the following dbx variables:

• Set $promptonfork to 2

• Set $mp_program to 1

When you set a breakpoint with dbx, it is global to all threads. The first thread to reach
the breakpoint will trip the breakpoint. This stops execution of the entire process (all
threads). If you set the breakpoint in code used by more than one thread, the program
could be in a different thread each time it stops. The thread ID is displayed at the stop, as
in the display in Example 3-2.

Example 3-2 Debugger Display of Pthread Program

(dbx) showthread all
Thread: Start: State: Pid: Location:
0x10000 COND-WAIT _SGIPT_sched_block ["xp.c":966]
0x10001 work_thread RUNNING 1512 FLOCAL_ALIGN ["workfn.c":864]
0x10002 work_thread RUNNING 1520 FLOCAL_ALIGN ["workfn.c":850]
0x10003 work_thread RUNNING 1563 FLOCAL_ALIGN ["workfn.c":866]
0x10004>work_thread RUNNING 1425 thr_tst ["workfn.c":391]

You can single-step a threaded program as long as you know that only one thread is
executing the code through which you are stepping. When you single-step through code
that is executed by more than one thread, confusing results can occur. To single-step, dbx
sets a breakpoint where the program should stop next. However, breakpoints are global.
When you give the next command in one thread, the stop can occur in a different thread.

Debugging with the Workshop Debugger

The Workshop Debugger is part of the Developer Magic package. In version 2.6.2 of this
package, the debugger is aware of pthreads. The command line view in the debugger
main window can be used to set breakpoints and to produce a display similar to the one
in Example 3-2.

Breakpoints set with the Workshop Debugger are global to the program and are taken by
the next thread to reach them, as with dbx.

Using POSIX Threads

145

Creating Pthreads

You create a pthread using pthread_create(). One argument to this function is a thread
attribute object of type pthread_attr_t. You pass a null address to request a thread with
default attributes, or you prepare an attribute object to reflect the features you want the
thread to have. You can use one attribute object to create many pthreads.

Functions related to attribute objects and pthread creation are summarized in Table 3-6
and described in the following text.

Initial Detach State

After a thread has terminated, it can be “detached.” Detaching means that the pthreads
library deletes its information about the thread, possibly releasing some memory (see
“Joining and Detaching” on page 150). There are three ways to detach a thread:

• Automatically when the thread terminates.

• Explicitly by calling pthread_join().

• Explicitly by calling pthread_detach().

Table 3-6 Functions for Creating Pthreads

Function Purpose

pthread_attr_init(3P) Initialize a pthread_attr_t object to default settings.

pthread_attr_setdetachstate(3P) Set the automatic-detach attribute in a pthread_attr_t object.

pthread_attr_setinheritsched(3P) Specify whether scheduling attributes come from the
attribute object or are inherited from the creating thread.

pthread_attr_setschedparam(3P) Set the starting thread priority in a pthread_attr_t object.

pthread_attr_setschedpolicy(3P) Set the scheduling policy in a pthread_attr_t object.

pthread_attr_setstacksize(3P) Set the stack size attribute in a pthread_attr_t object.

pthread_attr_setstackaddr(3P) Set the address of memory to use as a stack in a pthread_attr_
t object (when you allocate the stack for the new thread).

pthread_attr_destroy(3P) Uninitialize a pthread_attr_t object.

pthread_create(3P) Create a new thread based on an attribute object, or with
default attributes.

146

Chapter 3: Models of Parallel Computation

You can use pthread_attr_setdetachstate() to specify that a thread should be detached
automatically when it terminates. Do this when you know that the thread will not be
detached by an explicit function call.

Initial Scheduling Priority and Policy

Scheduling priorities and policies are described under “Scheduling Pthreads” on
page 157. You can specify an initial scheduling policy by calling pthread_attr_
setschedpolicy(), passing one of the policy constants SCHED_FIFO, SCHED_RR, or
SCHED_OTHER.

You can specify an initial thread priority in a struct sched_param object in memory (the
structure is declared in sched.h). Set the desired priority in the sched_priority field. Pass the
structure to pthread_attr_setschedparam().

The pthread_attr_setinheritsched() function is used to specify, in the attribute object,
whether a new thread’s scheduling policy and priority should be taken from the attribute
object, or whether these things should be inherited from the thread that creates the new
thread. When you set an attribute object for inheritance, the scheduling policy and
priority in the attribute object are ignored.

Thread Stack Allocation

Each pthread has an execution stack area in memory. You use pthread_attr_
setstacksize() to specify the size of this stack area. You cannot specify a stack size less
than a minimum. You can learn the minimum by calling sysconf() with _SC_THREAD_
STACK_MIN (see the sysconf(3C) reference page).

By default, pthread_create() allocates stack space of the specified size from dynamic
memory. When it does so, the stack space is automatically released when the thread is
detached.

You can instead preallocate stack space from any source of dynamic memory such as
malloc(). When you preallocate stack space, you must:

• Specify the address of the space using pthread_attr_setstackaddr().

This tells pthread_create() not to allocate space.

• Specify the size of the allocated space using pthread_attr_setstacksize().

This enables pthread_create() to initialize the correct starting stack address.

Using POSIX Threads

147

• Free the stack space when the thread terminates (see “Joining and Detaching” on
page 150).

There is normally no protection against a thread overrunning the space. If a thread
allocates too much automatic data or makes too many nested function calls, it will
attempt to modify memory outside the stack space. This might cause a segmentation
fault if that memory is not allocated, or it might modify memory used for other purposes.

Tip: When you preallocate stack space, you can create “red zones” around the allocated
stacks as follows:

• Allocate the stack memory in multiples of the system page size aligned on page
boundaries (see the getpagesize(2) and memalign(3C) reference pages).

• Allocate an extra page of memory above and below each stack area.

• Use the mprotect() function to set the protection of the extra pages to PROT_NONE
(see the mprotect(2) reference page).

This procedure creates untouchable pages at each end of the stack area. If the thread
misuses its stack, it will usually terminate at once with a segmentation fault. (It is still
possible for a thread to call a function that allocates more than a page of automatic
variables, and so skips over the “red zone” to modify memory beyond it.)

Because thread stack space is taken from dynamic memory, the allocation is charged
against the process virtual memory limit, not the process stack size limit as you might
expect (see the getrlimit(2) reference page for information on resource limits).

Executing and Terminating Pthreads

The functions you use to manage the progress of a thread are summarized in Table 3-7
and described in the following topics.

Table 3-7 Functions for Managing Thread Execution

Function Purpose

pthread_atfork(3P) Register functions to handle the event of a fork().

pthread_cancel(3P) Request cancellation of a specified thread.

pthread_cleanup_push(3P) Register function to handle the event of thread termination.

148

Chapter 3: Models of Parallel Computation

Getting the Thread ID

You call pthread_self() to get the thread ID of the calling thread. A thread can use this
thread ID when changing its own scheduling priority, for example (see “Scheduling
Pthreads” on page 157).

Initializing Static Data

Your program may use static data that should be initialized, but only once. The code can
be entered by multiple threads, and might be entered concurrently. How can you ensure
that only one thread will perform the initialization?

The answer is to create a variable of type pthread_once_t, statically initialized to the value
PTHREAD_ONCE_INIT. In the module code, you call pthread_once() passing the
addresses of the variable and of an initialization function. The pthreads library ensures
that the initialization function is called only once, and that any other threads calling
pthread_once() for this variable will wait until the first thread completes the call. An
example is shown in Example 3-3.

Example 3-3 One-Time Initialization

pthread_once_t first_time_flag = PTHREAD_ONCE_INIT;

pthread_cleanup_pop(3P) Unregister and optionally call termination handler.

pthread_detach(3P) Detach a terminated thread.

pthread_exit(3P) Explicitly terminate the calling thread.

pthread_join(3P) Wait for a thread to terminate and receive its return value.

pthread_once(3P) Execute initialization function once only.

pthread_self(3P) Return the calling thread’s ID.

pthread_equal(3P) Compare two thread IDs for equality.

pthread_setcancelstate(3P) Permit or block cancellation of the calling thread.

pthread_setcanceltype(3P) Specify deferred or asynchronous cancellation.

pthread_testcancel(3P) Permit cancellation to take place, if it is pending.

Table 3-7 (continued) Functions for Managing Thread Execution

Function Purpose

Using POSIX Threads

149

elaborate_struct_t uninitialized; /* thing to initialize */
void elaborate_initializer(void); /* function to do it */
int subroutine(...)
{

...
pthread_once(&first_time_flag, elaborate_initializer);
...

}

Setting Event Handlers

A thread can establish functions that will be called when threads terminate and when the
process forks.

Call pthread_cleanup_push() to register a function that is to be called in the event that
the current thread terminates, either by exiting or by cancellation. Call pthread_cleanup_
pop() to retract this registration and, optionally, to call the handler. These functions are
often used in library code, with the push operation done on entry to the library and the
pop done upon exit from the library. The push and pop operations are in fact
implemented partly as macro code. For this reason, calls to them must be strictly
balanced—a pop for each push—and each push/pop pair must appear in a single C
lexical scope. A nonstructured jump such as a longjmp (see the setjmp(3) reference page)
or goto can cause unexpected results.

Call pthread_atfork() to register three handlers related to a UNIX fork() call. The first
handler executes just before the fork() takes place; the second executes just after the
fork() in the parent process; the third executes just after the fork() in the child process.

The fork() operation creates a new process with a copy of the calling process’s address
space, including any locked mutexes. Typically, the new process immediately calls exec()
to replace the address space with a new program. When this is the case, there is no need
for pthread_atfork() (see the exec(2) and fork(2) reference pages). However, if the new
process continues to execute with the inherited address space, including perhaps calls to
library code that uses pthreads, it may be necessary for the library code to reinitialize
data in the address space of the child process. You can do this in the fork event handlers.

Terminating and Being Terminated

A thread begins execution in the function that is named in the pthread_create() call.
When it returns from that function, the thread terminates. A thread can terminate earlier
by calling pthread_exit(). In either case, the thread returns a value of type void*.

150

Chapter 3: Models of Parallel Computation

One thread can request early termination of another by calling pthread_cancel(), passing
the thread ID of the target thread. A thread can protect itself against cancellation using
two built-in status switches:

• The pthread_setcancelstate() function lets you prevent cancellation entirely
(PTHREAD_CANCEL_DISABLE) or permit cancellation (PTHREAD_CANCEL_
ENABLE).

• The pthread_setcanceltype() function lets you decide when cancellation will take
place, if it is allowed at all. Cancellation can happen whenever it is requested
(PTHREAD_CANCEL_ASYNCHRONOUS) or only at defined points (PTHREAD_
CANCEL_DEFERRED).

When you prevent cancellation by setting PTHREAD_CANCEL_DISABLE, a
cancellation request is blocked but remains pending until the thread terminates or
changes its cancellation state.

The initial state of a thread is PTHREAD_CANCEL_ENABLE and PTHREAD_
CANCEL_DEFERRED. In this state, a cancellation request is blocked until the thread
calls a function that is a defined cancellation point. The functions that are cancellation
points are listed in the pthread_setcanceltype(3) reference page. A thread can explicitly
permit cancellation by calling pthread_testcancel().

Joining and Detaching

Sometimes you do not care when threads will terminate—your program starts a set of
threads, and they continue until the entire program terminates.

In other cases, threads are created and terminated as the program runs. One thread can
find out when another has terminated by calling pthread_join(), specifying the thread
ID. The function does not return until the specified thread terminates. The value the
specified thread passed to pthread_exit() is returned. At this time, your program can
release any resources that you associate with the thread, for example stack space (see
“Thread Stack Allocation” on page 146).

The pthread_join() function detaches the terminated thread. If your program does not
use pthread_join(), and does continue execution after threads have terminated, you
must arrange for terminated threads to be detached in some other way. One way is by
specifying automatic detachment when the threads are created (see “Initial Detach State”
on page 145). Another is to call pthread_detach() at any time after creating the thread,
including after it has terminated.

Using POSIX Threads

151

If your program continues for a long time creating threads and letting them terminate,
but does not arrange for detaching the completed threads, eventually an error will occur
because resources have been used up.

Using Thread-Unique Data

In some designs, especially modules of library code, you need to store data that is both

• Unique to the calling thread

• Persistent from one function call to another

Normally, the only data that is unique to a thread is the contents of its local variables on
the stack, and these do not persist between calls. However, the pthreads library provides
a way to create persistent, thread-unique data. The functions for this are summarized in
Table 3-8.

Your program calls pthread_key_create() to define a new storage key. A storage key
represents one kind or class of data. Each thread has a unique instance of this class of
data, with an initial value of NULL. The returned key value (of type pthread_key_t) is used
by all threads to store and retrieve data of this class.

Any thread can use pthread_getspecific() to retrieve that thread’s unique instance of the
value stored under this key. A thread can only get its own instance, which is the instance
that has been stored by this same thread using pthread_setspecific(). Any thread’s stored
value is NULL until it stores a new value.

When you create a key, you can specify a destructor function that is called automatically
when a thread terminates. The destructor is called as long as the key is still valid and the

Table 3-8 Functions for Thread-Unique Data

Function Purpose

pthread_key_create(3P) Create a key (class of thread data)

pthread_key_delete(3P) Delete a key.

pthread_getspecific(3P) Retrieve this thread’s value for a key.

pthread_setspecific(3P) Set this thread’s value for a key.

152

Chapter 3: Models of Parallel Computation

key value for the terminating thread is not NULL. The destructor receives the thread’s
value for the key as its argument.

You create keys by calling pthread_key_create(). Keys can be created before any threads
are created. However, when you are designing a library module for use from any
threaded program, you need to create a key upon first entry to your library code. This is
an ideal application for a pthread_once_t variable (see “Initializing Static Data” on
page 148). The code in Example 3-4 suggests how a threaded module would create a key
if necessary, and initialize its contents for the current thread.

Example 3-4 Initializing Thread-Unique Data

typedef struct perThread_s {
...items of data unique to thread...

} perThread_t;
pthread_key_t perThreadKey; /* key used to find per-thread info */
pthread_once_t makePerThreadKey = PTHREAD_ONCE_INIT;
/*
|| Destructor function, called when any thread exits with a
|| non-NULL value of perThreadKey.
*/
void deletePerThread(void *arg)
{

free(arg);
}
/*
|| One-time initializing function, called through pthread_once,
|| to create the perThreadKey.
*/
void createPerThreadKey(void)
{

pthread_key_create(&perThreadKey,deletePerThread);
}
/*
|| Return the address of this thread’s instance of perThread_t,
|| Create the struct if necessary. Create the key if necessary.
*/
struct perThreadInfo *getPerThread(void);
{

perThread_t *ppt;
int ret;
pthread_once(&makePerThreadKey, createPerThreadKey);
ppt = pthread_getspecific(perThreadKey);
if (NULL==ppt)

Using POSIX Threads

153

{
ppt = (perThread_t*)malloc(sizeof(perThread_t));
...initialize fields of ppt->new per-thread struct...
ret = pthread_setspecific(perThreadKey,(void*)ppt);
if (ret) perror("pthread_setspecific()");

}
return ppt;

}

The code in Example 3-4 includes the following functions and global variables:

Pthreads and Signals

Signals are an integral part of UNIX programming. For a general overview of signal
concepts and numbers, see the signal(5) reference page. IRIX supports three different,
partly-compatible, signal facilities: BSD signals, SVR4 signals, and POSIX signals. When
you are writing a pthreads program, you must be sure to use only the POSIX signal
facilities. Do not mix use of other signal functions in a pthreads program or
unpredictable results can follow.

perThreadKey The key that represents the class of perThread_t structures.

makePerThreadKey A pthread_once_t variable used to ensure that pthread_key_
create() is called only once.

deletePerThread() Destructor function, passed to pthread_key_create(), called
when any thread terminates leaving a non-NULL value
under the perThreadKey key.

createPerThreadKey() Function called via pthread_once() to create perThreadKey.

getPerThread() Function that can be called from any thread to retrieve that
thread’s value of perThreadKey. If the key itself has not been
defined, the function defines it (calling
createPerThreadKey() by way of pthread_once()). If this
thread’s value of the key is NULL, the function creates and
initializes a value, and stores it using pthread_setspecific().

154

Chapter 3: Models of Parallel Computation

The POSIX signal functions, including new pthreads functions, are summarized in
Table 3-9. The functions are listed alphabetically. They are discussed in related groups in
the following topics.

Signal Generation

Signals can be generated asynchronously by events outside the program, for example
when a requested timer expires, or when a privileged process uses the kill() system
function. Signals can be generated by hardware action, for example when the program
references undefined memory.

Signals can be generated by program action as well. The kill() function can be used to
send a signal to the current process. The pthread_kill() function can generate signal
directed to a specific thread in the process.

Table 3-9 Functions for POSIX Signal Handling

Function Purpose

kill(2) Send a signal to a process or process group.

pthread_kill(3P) Send a signal to a specified thread.

pthread_sigmask(3P) In a program linked with libpthread, examine or change the
mask of signals allowed and blocked by the thread.

sigaction(2) Specify or test the action to be taken by the process when a
signal is received asynchronously.

sigpending(2) Return set of signals pending for the process or the calling
thread.

sigprocmask(2) In a program not linked with libpthread, examine or change the
mask of signals allowed and blocked by the process.

sigqueue(3) Queue a signal against a specified process.

sigsetops(3) Manipulate signal mask objects.

sigsuspend(2) Unblock selected signals for the calling thread, and wait for a
signal.

sigtimedwait(3)
sigwait(3)
sigwaitinfo(3)

Wait for and receive specified signals.

Using POSIX Threads

155

Signals from outside the program, and signals generated using kill(), are directed to the
process as a whole. Signals directed to the process are delivered to the first thread that
permits delivery of that kind of signal. (There is no way to predict which thread this will
be.)

Hardware-generated signals, and signals sent with pthread_kill(), are directed to one
specific thread. The signal can be delivered only to that thread.

Setting Signal Masks

A thread specifies which signals it is willing to receive. In a conventional,
single-threaded, process this is done using sigprocmask(). However, a program that is
linked with the pthreads library must use pthread_sigmask() instead.

Each thread has a signal mask, a set of bits that correspond to the possible signal numbers
(as listed in the signal(5) reference page). A 1-bit in the mask causes that signal to be
blocked. A blocked signal cannot be delivered to the thread. When that signal is directed
to the thread alone, the signal remains pending until the thread unblocks the signal.

When a signal is directed to the process, it is delivered to the first thread that is not
blocking that signal. If all threads block that signal, the signal remains pending until
some thread unblocks the signal or the process ends.

The family of functions documented in the sigsetops(3) reference page are used to create
and manipulate signal masks, setting and clearing bits.

Each thread inherits the signal mask of the thread that calls pthread_create(). You use
pthread_sigmask() to set the signal mask of the calling thread. Typically you will set an
initial mask in the first thread, so that it can be inherited by all other threads.

While the process runs, a thread can find out which signals are pending by calling
sigpending(). This function returns a mask showing the combination of signals pending
for the process as a whole and for the calling thread; that is, the signals that could be
delivered to the calling thread if the signals were not blocked.

Setting Signal Actions

When a signal is not blocked and is delivered, some action is taken. You specify what that
action should be using the sigaction() function. You specify an action for each signal
number separately. These actions are set on a process-wide basis, not individually for

156

Chapter 3: Models of Parallel Computation

each thread. Each thread has a private signal mask, but signal actions are specified for all
threads in the process. You choose among the following actions for each signal:

When a signal is delivered to a function, you have the option of specifying a function that
receives a siginfo_t structure with information about the signal. These and other options
are spelled out in the sigaction(2) reference page.

Receiving Signals Synchronously

You can design a program to receive signals in a synchronous manner instead of
asynchronously. To do this, set a mask that blocks all the signals that are to be received
synchronously. Then call one of the following three functions:

Using these functions you can write a thread that treats arriving signals as a stream of
events to be processed. This is generally the safest program model, much easier to work
with than the asynchronous model of signal delivery.

Receiving Signals Asynchronously

When the specified action for a signal is to catch the signal in a function and the signal is
not blocked, the signal is delivered asynchronously. That is, the function is called as soon
as the signal is generated or unblocked.

You can control the delivery of asynchronous signals more closely using the
sigsuspend() function. This function takes a signal mask as its argument. It makes that
mask the current mask for the thread (unblocking some signals that were blocked). The

SIG_DFL Default handling, which depends on the specific signal but is either
to ignore the signal or to terminate the process, with or without a
dump.

SIG_IGN Ignore the signal, that is, discard it when it is generated. Certain
signals cannot be ignored.

(function address) Signal is delivered by an asynchronous call to the specified function.

sigwait(3) Suspend until one of a specified set of signals is generated, then
return the signal number.

sigwaitinfo(3) Like sigwait(), but returns additional information about the signal.

sigtimedwait(3) Like sigwaitinfo(), but also returns after a specified time has elapsed
if no signal is received.

Using POSIX Threads

157

calling thread is suspended until at least one signal has been delivered. After a signal has
been handled, the function restores the previous signal mask and returns.

Scheduling Pthreads

By default, the pthreads library schedules the threads of a process in a round-robin
fashion. Much of the scheduling machinery is done in the library, within the context of
the user process, without assistance from the IRIX kernel. On a multiprocessor, threads
can run concurrently.

The scheduling algorithm is controlled by two parameters: a policy and a priority for
each thread. These variables are set initially when the thread is created (see “Initial
Scheduling Priority and Policy” on page 146), and can be modified while the thread is
running. The functions used in scheduling are summarized in Table 3-10.

Scheduling Policy

There are two scheduling policies in this implementation: first-in-first-out (SCHED_
FIFO) and round-robin (SCHED_RR). (The default SCHED_OTHER behaves the same as
SCHED_RR.) SCHED_FIFO and SCHED_RR are similar. The round-robin scheduler
ensures that when a thread has used a certain maximum amount of time without
blocking, it is moved to the end of the queue of threads of the same priority, and can be
preempted by other threads.

The details of scheduling are discussed in the pthread_attr_setschedpolicy(3) reference
page.

Table 3-10 Functions for Schedule Management

Function Purpose

pthread_getschedparam(3P) Get a thread’s policy and priority.

pthread_setschedparam(3P) Set a thread’s policy and priority.

sched_get_priority_max(3C) Return the maximum priority value.

sched_get_priority_min(3C) Return the minimum priority value.

sched_yield(2) Relinquish the processor.

158

Chapter 3: Models of Parallel Computation

Scheduling Priority

The queues of runnable threads are ordered by thread priority numbers, with a small
number representing a low priority, and a larger number representing a higher priority.
Threads with higher priorities are chosen to execute before threads with lower priorities.

The sched_get_priority_max() and sched_get_priority_min() functions return the
highest and lowest priority numbers. There are at least 32 priority values and the lowest
is greater than or equal to 0. You can use these functions to set up a system of relative
priorities as suggested by the code in Example 3-5.

Example 3-5 Establishing Relative Priority Levels

#include <sched.h>
int higherP, mediumP, lowerP;
void setRelativePriorities()
{

int maxP, minP;
maxP = sched_get_priority_max();
minP = sched_get_priority_min();
mediumP = minP + ((maxP-minP)/2);
higherP = mediumP+1;
lowerP = mediumP-1;

}

When all threads use one of the three priorities higherP, mediumP, or lowerP, threads that
run at higherP will always run in preference to threads at the other two priorities.

A thread can set another’s priority or scheduling policy, or both, using pthread_
setschedparam(). A simple function to set a specified priority on the current thread,
returning the previous value, is shown in Example 3-6.

Example 3-6 Function to Set Own Priority

#include <sched.h> /* struct sched_param */
int setMyPriority(int newP)
{

pthread_t myTid = pthread_self();
int ret, oldP, policy;
struct sched_param sp;
(void) pthread_getschedparam(myTID,&policy,&sp);
oldP = sp.sched_priority;
sp.sched_priority = newP;
ret = pthread_setschedparam(myTID,policy,&sp);

Using POSIX Threads

159

if (ret)
{ perror("pthread_setschedparam()"); }
return oldP;

}

Synchronizing Pthreads

Asynchronous threads using a common address space must cooperate and coordinate
their use of shared variables. Independent processes coordinate using the mechanisms
described in previous chapters: IRIX semaphores and locks and SVR4 semaphores.
Threads cannot use these IPC mechanisms. Threads can coordinate using:

• Mutex (mutual exclusion) objects, which allow threads to gain exclusive use of a
shared variable

• Condition variables, which allow a thread to wait when a controlling predicate is
false.

Threads and Conventional IPC

You cannot use IRIX semaphores, locks, and barriers to coordinate between multiple
threads within a single program. Nor can you use SVR4 semaphores for this purpose.

Preparing Mutex Objects

A mutex is a software object that stands for the right to modify some shared variable, or
the right to execute a critical section of code. A mutex can be owned by only one thread
at a time; other threads trying to acquire it wait.

When a thread wants to modify a variable that it shares with other threads, or execute a
critical section, the thread claims the associated mutex. This can cause the thread to wait
until it can acquire the mutex. When the thread has finished using the shared variable or
critical code, it releases the mutex. If two or more threads claim the mutex at once, one
acquires the mutex and continues, while the others are blocked until the mutex is
released.

160

Chapter 3: Models of Parallel Computation

A mutex has attributes that control its behavior. The pthreads library contains several
functions used to prepare a mutex for use. These functions are summarized in Table 3-11.

A mutex must be initialized before use. You can do this in one of three ways:

• Static assignment of the constant PTHREAD_MUTEX_INITIALIZER.

• Calling pthread_mutex_init() passing NULL instead of the address of a mutex
attribute object.

• Calling pthread_mutex_init() passing a pthread_mutexattr_t object that you have set
up with attribute values.

The first two methods initialize the mutex to default attributes. Dynamic initialization
should be done only once (see “Initializing Static Data” on page 148).

Two attributes can be set in a pthread_mutexattr_t. The priority inheritance protocol is the
more important. You can set the priority inheritance protocol using pthread_mutexattr_
setprotocol() to one of three values:

Table 3-11 Functions for Preparing Mutex Objects

Function Purpose

pthread_mutex_init(3P) Initialize a mutex object based on a pthread_mutexattr_t.

pthread_mutex_destroy(3P) Uninitialize a mutex object.

pthread_mutexattr_init(3P) Initialize a pthread_mutexattr_t with default attributes.

pthread_mutexattr_destroy(3P) Uninitialize a pthread_mutexattr_t.

pthread_mutexattr_getprotocol(3P) Query the priority protocol in a pthread_mutexattr_t.

pthread_mutexattr_setprotocol(3P) Set the priority protocol choice in a pthread_mutexattr_t.

pthread_mutexattr_getprioceiling(3P) Query the minimum priority in a pthread_mutexattr_t.

pthread_mutexattr_setprioceiling(3P) Set the minimum priority in a pthread_mutexattr_t.

PTHREAD_PRIO_NONE The mutex has no effect on the thread that acquires it.

PTHREAD_PRIO_PROTECT The thread holding the mutex runs at a priority at least
as high as the highest priority of any mutex that it
currently holds.

Using POSIX Threads

161

When a low priority thread has acquired a mutex, and a thread with higher priority
claims the mutex and is blocked, a “priority inversion” takes place—a higher-priority
thread is forced to wait for one of lower priority. The PTHREAD_PRIO_INHERIT
protocol prevents this—when a thread of higher priority blocks, the thread holding the
mutex has its priority boosted during the time it holds the mutex.

When round-robin scheduling is used, and a mutex represents a critical section of code,
a second problem can arise. If a thread acquires the mutex, enters the critical section, and
then is suspended because its time slice is up, other threads can be blocked needlessly
waiting for the mutex. The PTHREAD_PRIO_PROTECT protocol prevents this. Using
pthread_mutexattr_setprioceiling() you set a priority higher than normal for the mutex.
A thread that acquires the mutex runs at this higher priority while it holds the mutex.
This keeps it at the front of the round-robin queue until it exits the critical section and
releases the mutex.

Tip: PTHREAD_PRIO_NONE uses a faster code path than the other two priority options
for mutexes.

Using Mutexes

The functions for claiming, releasing, and using mutexes are summarized in Table 3-12.

PTHREAD_PRIO_INHERIT The thread holding the mutex runs at a priority at least
as high as the highest priority of any thread blocked on
that mutex.

Table 3-12 Functions for Using Mutexes

Function Purpose

pthread_mutex_lock(3P) Claim a mutex, blocking until it is available.

pthread_mutex_trylock(3P) Test a mutex and acquire it if it is available, else return an
error.

pthread_mutex_unlock(3P) Release a mutex.

pthread_mutex_getprioceiling(3P) Query the minimum priority of a mutex.

pthread_mutex_setprioceiling(3P) Set the minimum priority of a mutex.

162

Chapter 3: Models of Parallel Computation

To determine where mutexes should be used, examine the memory variables and other
objects (such as files) that can be accessed from multiple threads. Create a mutex for each
set of shared objects that are used together. Ensure that the code acquires the proper
mutex before it modifies the shared objects. You acquire a mutex by calling pthread_
mutex_lock(), and release it with pthread_mutex_unlock(). When a thread must not be
blocked, it can use pthread_mutex_trylock() to test the mutex and lock it only if it is
available.

Preparing Condition Variables

Like mutexes and threads themselves, condition variables are supplied with a
mechanism of attribute objects (pthread_condattr_t objects) and static and dynamic
initializers. However, a condition variable has no useful attributes to initialize in this
implementation. The functions for initializing one are summarized in Table 3-13.

A condition variable must be initialized before use. You can do this in one of three ways:

• Static assignment of the constant PTHREAD_COND_INITIALIZER.

• Calling pthread_cond_init() passing NULL instead of the address of an attribute
object.

• Calling pthread_cond_init() passing a pthread_condattr_t object that you have set up
with attribute values.

The first two methods initialize the variable to default attributes. Dynamic initialization
should be done only once (see “Initializing Static Data” on page 148).

Using Condition Variables

A condition variable is a software object that represents a test of a Boolean condition.
Typically the condition changes because of a software event such as “other thread has
supplied needed data.” A thread that wants to wait for that event claims the condition

Table 3-13 Functions for Preparing Condition Variables

Function Purpose

pthread_cond_init(3P) Initialize a condition variable based on an attribute object.

pthread_condattr_init(3P) Initialize a pthread_condattr_t to default attributes.

pthread_condattr_destroy(3P) Uninitialize a pthread_condattr_t.

Using POSIX Threads

163

variable, which causes it to wait. The thread that recognizes the event signals the
condition variable, releasing one or all threads that are waiting for the event.

A thread holds a mutex that represents a shared resource. While holding the mutex, the
thread finds that the shared resource is not complete or not ready. The thread needs to do
three things:

• Give up the mutex so that some other thread can renew the shared resource.

• Wait for the event that “resource is now ready for use.”

• Re-acquire the mutex for the shared resource.

These three actions are combined into one using a condition variable. The functions used
with condition variables are summarized in Table 3-14.

The pthread_cond_wait() and pthread_cond_timedwait() functions require two
arguments: a mutex that is owned by the calling thread, and a condition variable. The
mutex is released and the wait begins. When the event is signalled (or the time limit
expires), the mutex is reacquired, as if by a call to pthread_mutex_lock().

The POSIX standard explicitly warns that it is possible in some cases for a conditional
wait to return early, before the event has been signalled. For this reason, a conditional
wait should always be coded in a loop that tests the shared resource for the needed
status. These principles are suggested in the code in Example 3-7, which is modelled after
an example in the POSIX 1003.1c standard.

Example 3-7 Use of Condition Variables

#include <assert.h>

Table 3-14 Functions for Using Condition Variables

Function Purpose

pthread_cond_wait(3P) Wait on a condition variable.

pthread_cond_timedwait(3P) Wait on a condition variable, returning with an error after a
time limit expires.

pthread_cond_signal(3P) Signal that an awaited event has occurred, releasing at least
one waiting thread.

pthread_cond_broadcast(3P) Signal that an awaited event has occurred, releasing all waiting
threads.

164

Chapter 3: Models of Parallel Computation

#include <pthread.h>
typedef int listKey_t;
typedef struct element_s { /* list element */

listKey_t key;
struct element_s *next;
int busyFlag;
pthread_cond_t notBusy; /* event of no-longer-in-use */

} element_t;
typedef struct listHead_s { /* list head and mutex */

pthread_mutex_t mutList; /* right to modify the list */
element_t *head;

} listHead_t;
/*
|| Internal function to find an element in a list, returning NULL
|| if the key is not in the list.
|| A returned element could be in use by another thread (busy).
|| The caller is assumed to hold the list mutex, otherwise
|| the returned value could be made invalid at any time.
*/
static element_t *scanList(listHead_t* lp, listKey_t key)
{

element_t *ep;
for (ep=lp->head; (ep) ; ep=ep->next)
{

if (ep->key == key) break;
}
return ep;

}
/*
|| Public function to find a key in a list, wait until the element
|| is no longer busy, mark it busy, and return it.
*/
element_t *getFromList(listHead_t* lp, listKey_t key)
{

element_t *ep;
pthread_mutex_lock(&lp->mutList); /* lock list against changes */
while ((ep=scanList(lp,key)) && (ep->busyFlag))
{

pthread_cond_wait(&ep->notBusy, &lp->mutList); /* (A) */
}
if (ep) ep->busyFlag = 1;
pthread_mutex_unlock(&lp->mutList);
return ep;

}
/*

Using POSIX Threads

165

|| Public function to release an element returned by getFromList().
*/
void freeInList(listHead_t* lp, element_t *ep)
{

assert(ep->busyFlag);
pthread_mutex_lock(&lp->mutList); /* lock list to prevent races */
ep->busyFlag = 0;
pthread_cond_signal(&ep->notBusy);
pthread_mutex_unlock(&lp->mutList);

}
/*
|| Public function to delete a list element returned by getFromList().
*/
void deleteInList(listHead_t* lp, element_t *ep)
{

element_t **epp;
assert(ep->busyFlag);
pthread_mutex_lock(&lp->mutList);
for (epp = &lp->head; ep != *epp; epp = &((*epp)->next))
{ /* finding anchor of *ep in list */ }
epp = ep->next; / remove *ep from list */
ep->busyFlag = 0;
pthread_cond_broadcast(&ep->notBusy);
pthread_mutex_unlock(&lp->mutList);
pthread_cond_destroy(&ep->notBusy);
free(ep);

}

The functions in Example 3-7 implement part of a simple library for managing lists. In a
list head, mutList is a mutex object that represents the right to modify any part of the list.
The elements of a list can be “busy,” that is, in use by some thread. An element that is
busy has a nonzero busyFlag field.

The getFromList() function looks up an element in a specified list, makes that element
busy, and returns it. The function begins by acquiring the list mutex. This ensures that
the list cannot change while the function is searching the list; and makes it legitimate for
the function to change the busy flag in an element.

When it finds the element, the function might discover that the element is already busy.
In this case, it must wait for the event “element is no longer busy,” which is represented
by the condition variable notBusy in the element. In order to wait for this event,
getFromList() calls pthread_cond_wait() passing its list mutex and the condition

166

Chapter 3: Models of Parallel Computation

variable (point “(A)” in the code). This releases the list mutex so that other threads can
acquire the list and do their work on other elements.

When any thread wants to release the use of a list element, it calls freeInList(). After
clearing the busy flag in the list element, freeInList() announces that the event “element
is no longer busy” has occurred, by calling pthread_cond_signal().

This call releases a thread that is waiting at point “(A).” If there is more than one thread
waiting for the same element, the first in priority order is released. The released thread
re-acquires the list mutex and resumes execution. The first thing it does is to repeat its
search of the list for the desired key and, on finding the element again, to test it again for
busyness. This repetition is needed because it is possible to get spurious returns from a
condition variable.

When a thread wants to delete a list element, it gets the list element by calling
getFromList(). This ensures that the element is busy, so no other thread is using it. Then
the thread calls deleteInList(). This function will change the list, so it begins by acquiring
the list mutex. Then it can safely modify the list pointers. It scans up the list looking for
the pointer that points to the target element. It removes the target element from the list
by copying its next field to replace the pointer to the target element.

With the element removed from the list, deleteInList() calls pthread_cond_broadcast()
to wake up all threads—not just the first thread—that might be waiting for the element
to become nonbusy. Each of these threads resumes execution at point “(A)” by
attempting to re-acquire the list mutex. However, deleteInList() is still holding the list
mutex. The mutex is released; then the other threads can resume execution following
point “(A),” but this time when they search the list, the desired key will no longer be
found.

Meanwhile, deleteInList() uses pthread_cond_destroy() to release any memory that the
pthreads library might have associated with the condition variable, before releasing the
list element object itself.

Using MPI and PVM

MPI (see “Message-Passing Interface (MPI) Model” on page 130) and PVM (see
“Portable Virtual Machine (PVM) Model” on page 130) are two approaches to the same
problem: how to distribute a concurrent program across a cluster of computers.

Using MPI and PVM

167

Choosing Between MPI and PVM

Silicon Graphics, Inc. has adopted the MPI interface as the primary and preferred model
for distributed applications on Array processors. There are occasions when you may
elect to use PVM instead, but in general MPI is strongly recommended for new
applications and for applications that are being ported to an Array system.

In many ways, MPI and PVM are similar:

• Each is designed, specified, and implemented by third parties who have no direct
interest in selling hardware.

• Support for each is available “on the net” at low or no cost.

• Each defines portable, high-level, functions that are used by a group of processes to
make contact and exchange data without having to be aware of the communication
medium.

• Each supports C and Fortran 77.

• Each provides for automatic conversion between different representations of the
same kind of data so that processes can be distributed over a heterogeneous
computer network.

The primary reason MPI is preferred for Array systems is performance. The design of
MPI is such that a highly optimized implementation could be created for the
homogenous environment of Silicon Graphics, Inc. Array systems. Under Array 2.0, MPI
applications take advantage of a HIPPI “bypass” connection to exchange data with small
latencies and high data rates. Specific data rates and latencies are listed in the book
Getting Started With Array Systems, 007-3058-002.

The PVM implementation for Array systems is not as highly tuned, although still
effective for some work.

Another difference between MPI and PVM is in the support for the “topology” (the
interconnect pattern: grid, torus, or tree) of the communicating processes. In MPI, the
group size and topology are fixed when the group is created. This permits low-overhead
group operations. The lack of run-time flexibility is not usually a problem because the
topology is normally inherent in the algorithmic design. In PVM, group composition is
dynamic, which requires the use of a “group server” process and causes more overhead
in common group-related operations.

168

Chapter 3: Models of Parallel Computation

Other reasons can be found in the design details of the two interfaces. MPI, for example,
supports asynchronous and multiple message traffic, so that a process can wait for any
of a list of message-receive calls to complete, and can initiate concurrent sending and
receiving. MPI provides for a “context” qualifier as part of the “envelope” of each
message. This permits you to build encapsulated libraries that exchange data
independently of the data exchanged by the client modules. MPI also provides several
elegant data-exchange functions for use by a program that is emulating an SPMD parallel
architecture.

PVM is possibly more suitable for distributing a program across a heterogenous network
that includes both uniprocessors and multiprocessors, and includes computers from
multiple vendors. When the application runs in the environment of a Silicon Graphics,
Inc. Array system, MPI is the recommended interface.

Porting From PVM to MPI

Because MPI and PVM address similar problems in ways that are conceptually similar,
you can consider porting a program from PVM to MPI in order to get better performance
on an Array system. A detailed discussion of this process, with examples, appears in
Appendix B, “Converting PVM Applications to MPI.”

